DESIGN STANDARDS

SECTION 2

INDEX

<table>
<thead>
<tr>
<th>Article</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01</td>
<td>General Statement</td>
</tr>
<tr>
<td>2.02</td>
<td>Water Distribution System Pressure</td>
</tr>
<tr>
<td>2.03</td>
<td>Water Distribution Main Sizes</td>
</tr>
<tr>
<td>2.04</td>
<td>Hydraulic Network Analysis</td>
</tr>
<tr>
<td>2.05</td>
<td>Pumping Stations</td>
</tr>
<tr>
<td>2.06</td>
<td>Water Storage Tanks</td>
</tr>
<tr>
<td>2.07</td>
<td>Water Main Location</td>
</tr>
<tr>
<td>2.08</td>
<td>Water Services</td>
</tr>
<tr>
<td>2.09</td>
<td>Valves</td>
</tr>
<tr>
<td>2.10</td>
<td>Hydrants</td>
</tr>
<tr>
<td>2.11</td>
<td>Automatic Flushing and Sampling Stations</td>
</tr>
<tr>
<td>2.12</td>
<td>Vaults</td>
</tr>
<tr>
<td>2.13</td>
<td>Cross Connection Control</td>
</tr>
<tr>
<td>2.14</td>
<td>Water Main Extension Submittal</td>
</tr>
<tr>
<td>2.15</td>
<td>Corrosive Soils</td>
</tr>
</tbody>
</table>
DESIGN STANDARDS

2.01 General Statement

A. Include in the design of new water systems, projections for present and future demands based on population projections, per capita consumption, area population densities and fire requirements. Utilize parameters above when sizing system extensions; factoring in available sources of supply, available pressures, project phasing and water quality regulations.

B. Include measures designed to achieve sufficient pressure and flow in the water main(s), and to mitigate the effect of soil corrosiveness on water mains and appurtenances. Provide water main location references to property lines, easement boundaries, and other utilities on plans. Calculate the size of service lines, and site valves and hydrants for proper system operation. Also note any special valve, pump, and water storage requirements.

C. Design measures to maintain water quality in accordance with existing and proposed regulations, including minimizing water age.

D. Submit water system designs prepared by, or under the direction of, a licensed professional engineer that is registered in the State of New York.

E. Reference Standards:

1. AWWA D100 – Standard for Welded Steel Tanks for Water Storage
2. AWWA C153 – Ductile Iron Compact Fittings for Water Service
3. AWWA C207 – Steel Pipe Flanges for Water Service, Size 4" to 144"
4. AWWA C208 – Dimensions for Fabricated Steel Water Pipe Fittings
5. AWWA C906 – Polyethylene Pressure Pipe and Fittings
6. AWWA M42 – Steel Water-Storage Tanks
7. GLUMRD (Great Lakes – Upper Mississippi River Board) - 10 States Standards
8. ISO - Guild for Determination of Needed Fire Flow
9. New York State Building Code
2.02 Water Distribution System Pressure

A. Protect services in areas where the static pressure exceeds 70 psi under any demand condition with individual pressure reducing valves on each domestic service. Individual pressure reducing valves will be maintained by the Owner or Developer in accordance with all applicable plumbing codes. Submit plans identifying all domestic services that will require individual pressure reducing valves.

B. Protect areas where the static pressure will exceed 130 psi, under any demand condition, with a pressure reducing valve. Pressure reducing valves will be maintained by Monroe County Water Authority (Authority).

C. Provide a design that meets the following minimum parameters for water pressure:

1. Design water system so that each building with 2 or less stories, will have at least 35 psi at first floor level with a flow rate of 15 gpm (or calculated maximum domestic flow for the building, whichever is greater), with a domestic demand at all other units in the system proposed flowing at a rate of:

<table>
<thead>
<tr>
<th>Number of Units</th>
<th>Demand/Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 50</td>
<td>5 gpm</td>
</tr>
<tr>
<td>51 to 100</td>
<td>4 gpm</td>
</tr>
<tr>
<td>101 to 150</td>
<td>3 gpm</td>
</tr>
<tr>
<td>151 and greater</td>
<td>2 gpm</td>
</tr>
</tbody>
</table>

2. Design water system so that buildings with 3 or more stories meet or exceed New York State Plumbing Code Standards.

3. Design water system to maintain a minimum pressure of 20 psi under fire flow demand at all points. Note highest and lowest elevation points of the water mains and services, and note flow and pressure available at each.

4. Adequately size water mains and services to make sure that the standards listed above are met for each section and for all future phases of construction.

D. Services which will have water pressure between 20 and 40 psi under any conditions of demand, except fire flows, are termed “Low Pressure Water Services”. If a property can be served by extending a main from an adjacent higher pressure zone, then a low pressure water service will generally not be permitted. Individual house pumps may be required to meet New York State Plumbing Code Standards. Supply design of house pump systems with initial design submission if applicable. Local Department of Health approval is required for all house pump installations. The Authority reserves the right to not approve a Low Pressure Water Service and /or require written acknowledgement of these conditions form the affected property Owner(s).
2.03 Water Distribution Main Sizes

A. General Design Requirements

1. Size all water mains based on flow demands and pressure requirements listed herein.

a. Design water systems using 8-inches as the minimum diameter water main size unless a network hydraulic analysis is performed and the Authority approves of the smaller diameter main. A departure from the minimum size requirements will be considered if there is no potential for future main extension and all flow and pressure requirements are met.

B. Fire Protection Design

1. Design for fire protection in accordance with recommendations of the Fire Department having jurisdiction and the “Fire Suppression Rating Schedule” as published by Insurance Services Office (ISO). Design a system that will maintain a residual water main pressure on the customer’s side of the meter and backflow device of at least 20 psi under fire flow conditions at all points of the water system measured at ground level and during all phases of the proposed project. Any departure from ISO’s schedule will only be considered with written approval from the Fire Department or Fire Marshall.

2. List all required and calculated fire flows on the Proposed Project Data Sheet (Appendix F).

3. Design fire protection so that maximum water velocity does not exceed 20 feet/second under any emergency condition.

4. Design for fire suppression sprinkler systems in accordance with requirements of the Fire Department having jurisdiction and the “Fire Suppression Rating Schedule” as published by Insurance Services Office (ISO). The Authority will provide water supply data, at the point of connection, for all projects that have fire sprinkler systems. Design shall take into consideration all pressure losses associated with the service line, meter, backflow assembly and appurtenances. Design pump assisted fire suppression sprinkler systems so that the public water main system is not drawn down below 20 psi.

2.04 Hydraulic Network Analysis

A. Water Supply Capacity

1. Requests for water supply curves should be made by the Developer’s Engineer prior to starting the initial design. Provide the following information for each connection point to the existing water main with the request:
a. Location, type of development and number of units proposed within the development.

b. Anticipated fire flow requirements.

c. Anticipated flushing requirements necessary to meet AWWA C651 standards.

d. Location and elevation of the proposed tie-in point to the existing water system.

B. Hydraulic Network Analysis Submittal

1. Supply hydraulic network analysis (HNA) calculations that are certified by a New York State licensed Professional Engineer. Utilize the same elevation datum for the hydraulic network analysis as used on the grading plan. If the final grading plan deviates significantly from the elevations used in the analysis, then a revised analysis will be required.

2. Supply a HNA with the project’s initial design application for review. However, for larger projects, such as a major subdivision, water district or industrial complex with large water demands, submit HNA prior to the initial design application for review.

The Developer’s Engineer is encouraged to contact the Authority for guidance, especially if more than one feed is required.

3. Supply with the HNA for each scenario, and include the following items:

a. Supply a visual layout drawing of the pipe network, showing all model components (pipes, junction nodes, pumps, reservoirs, etc.). Label special control valves, such as PRV’s, flow control valves and check valves; standard isolation valves need not be shown. Also, label all nodes (with ID, elevation and pressure), pipes (with ID diameter and flow rate), hydrants (with ID and elevation), pumps (with ID and discharge hydraulic grade, reservoirs (with ID and elevation), tanks (with ID and water level elevation), and PRV’s (with ID, upstream pressure and downstream pressure).

b. Supply result tables that include a pipe table (complete with pipe ID, pipe material, C factor, length, flow rate, head loss/1000 feet and total headloss), junction node table (complete with node ID, demand, elevation, hydraulic grade and pressure), pump table (complete with pump ID, elevation, flow rate, discharge hydraulic grade, and the flow and head points used to describe the pump curve), reservoir table (complete with reservoir ID and elevation), tank table if applicable (complete with diameter and the following elevations: base, minimum level, maximum level and initial level for model run), and a PRV table if applicable (complete with diameter, minor loss factor (K factor), flow rate, upstream hydraulic grade and pressure, downstream hydraulic grade and pressure).

c. Supply a copy of the Authority’s field flow test, email or other communication showing the basis for the connection point hydraulics.
d. Supply information on the development (type of development, number of acres, number of units, fire flow requirements, etc).

e. Note location of all fire hydrants.

f. Note the name and version of software used for the analysis.

g. Note staging or phasing of development.

h. Note service data and sizing results. Note finished floor elevations of units supplied. Note separately units located at the highest and lowest elevations.

i. Note the appropriate off-site demands.

j. Identify the weakest fire flows available in the hydraulic network analysis. Identify the hydrants that will be located at the highest and lowest points and flows available.

k. Supply water quality modeling if requested by the Authority.

4. Use the following roughness factors when performing any hydraulic network analysis:

 a. Unlined Cast Iron Pipe - 35

 b. Lined Cast Iron Pipe – C - 70

 c. Ductile Iron and AC Pipe - 110

 d. High Density Polyethylene or Polyvinyl Chloride Pipe – C = 130

 e. All other existing pipe – C - 100

2.05 Pumping Stations

 A. Provide building style and architectural consistent with the surrounding buildings with features approved by the Authority.

 B. Acceptable building types:

 1. Above-grade with brick exterior walls, CMU interior walls and stick-built roof framing.

 2. Above-grade architectural insulated precast buildings where acceptable to the Authority.

 3. Below-grade and package skid-mounted stations are not permitted.

 C. Provide Pump Stations (PS) that are designed, approved and stamped by a New York State Licensed Professional Engineer and complies with all New York State Building Codes.
D. Design pumping capacity in accordance with Recommended Standards for Water Works and the Authority’s input. Pumping capacity shall be coupled with tank size and location. Locate PS to minimize suction draw down impact with HNA using extended model runs. Submit hydraulic calculations both upstream and downstream for the Authority’s review and approval.

E. Design and construct PS with enough floor area and correct riser pipe sizing to accommodate a future increase in pump and motor sizes. Include future piping for an addition pump at next horse power increment. Future planning of pump capacity shall be as approved by the Authority.

F. Determine type and capacity of electrical supply when considering sites. Stations with pumps driven by motors of 5 hp or less can have a 200 amp 220v single phase electric service. Stations with pumps driven by motors greater than 5 hp shall have 480v three phase electric services.

G. Design and provide a vault with a magnetic flow meter on the discharge piping.

H. Design and provide security measures meeting the Authority’s requirements for PS station and vault hatches.

I. Design and provide PS with the following features and appurtenances:

1. Coat piping exterior surfaces with Authority approved coatings both in PS and vaults.

2. Provide piping with coated interior surfaces with either a cement mortar lining or other NSF 61 approved potable water coating.

3. Provide 120v house power.

4. Provide natural gas based heat where available and electric heat in areas not served by natural gas.

5. Provide instrumentation for suction and discharge pressure, power monitoring, flow monitoring, security measures, temperature alarm, control valve (if used) to indicate when open and closed. All instrument and control equipment shall meet current Authority standards.

6. Provide telemetry equipment complying with the Authority’s standards. Coordinate the type of telemetry communication means with the Authority.

7. Provide Authority approved door locks and internal security sensors.

8. Provide a doorway large enough to install and remove all components.
9. Design and provide all necessary clear floor space and ceiling height to allow items to be removed using either an overhead crane or other approved means.

10. Provide Authority approved motors, (s.f. 1.15) motor drives and programmable logic controls.

11. Provide Authority approved pumps and appurtenances.

12. Coat interior walls with Authority approved coating.

13. Provide sound attenuation measures when required by the Authority.

14. Provide an emergency generator to power pump(s) capable of providing average day demand.

15. Provide hypo-chlorite booster injection if required by the Authority.

16. Provide chlorine residual monitoring if required by the Authority.

17. Provide restroom facilities if required by the Authority.

18. Provide an 8’ tall metal fence with barbed wire along the top if required by the Authority

J. Design and provide a PS site with the following requirements:

1. Provide a minimum parcel of 250’ x 250’ or with 30’ of clearance around PS, whichever is greater in size and accommodates parking requirements noted herein.

2. Design and provide site grades that are mowable.

3. Provide a paved driveway with a maximum of 8% slope, capable of handling three 1-ton trucks at a time with a turn around.

2.06 Water Storage Tanks

A. Acceptable types of storage tanks

1. ANSI/AWWA D100 Welded Carbon Steel Tanks for Water Storage (Use of Section 14 is not permitted).

2. ANSI/AWWA D107 Composite Elevated Tanks for Water Storage.

3. ANSI/AWWA D110 Wire- and Strand-Wound, Circular, Prestressed Concrete Water Tanks, Type III only

4. Other types of storage tanks are not allowed.
B. Provide a tank and foundation that is designed and approved by a New York State Licensed Professional Engineer and complies with all New York State Building Codes.

C. Document that FAA Structural Notification is made and determination given.

E. Design tank with a configuration that stores 80% of usable capacity required within normal system operating ranges, minimizes water age, promotes mixing, optimizes water turnover, limits ice formation and has a self-supporting roof.

F. Design tank features using internal pressure that is calculated at maximum overflow level, and with minimum design loads conforming to NYS Building Code applicable to site location and ANSI/AWWA standards for type of tank chosen.

G. Design shall include current Authority approved interior and exterior coating systems. Provide a NACE level I inspector for all coating work.

H. Design venting for maximum inflow (total output of pumps feeding into the system with no demand) and outflow (total flow if outlet pipe failed completely at tank foundation edge).

I. Design and provide tank with the following required features and appurtenances:

1. Provide passive cathodic protection for under the floor and impressed current cathodic protection for all interior submerged surfaces.

2. Provide individual inlet, outlet and drain piping.

3. Provide a mixing system designed to prevent stratification.

4. Provide clog-resistant, freeze proof venting that meets current Authority tank design specifications.

5. Provide twin 30" shell hatchways that close against pressure and have a greasable hinge. Place hatchways 180° apart.

6. Provide a single, lockable 30” roof hatchway near shell ladder.

7. Provide shell ladders and roof access on south face meeting OSHA standards with round rungs, anti-climb shielding, and the Authority’s standard fall prevention system.

8. Provide roof railings and roof fall prevention features meeting OSHA standards from shell wall to roof center with a tie-off fixture near roof center.
9. Provide an overflow system capable of handling total output of pumps feeding into the system with no demand.

10. Provide anchor chairs that leave room to coat around anchor bolts.

11. Provide foundation with a protective coating on all exposed surfaces.

J. Design and provide a tank site meeting the following requirements:

1. Provide a minimum parcel of 250’ x 250’ or with 75’ of clearance around tank, whichever is greater in size.

2. Provide chain link fencing meeting the Authority’s security standards (i.e. 8’ tall, topped with 3 strands of barbed wire, top and bottom rails, and a 16’ wide lockable double gate entrance).

3. Design site to be cleared and grubbed with a minimum 10’ of clearance between outside of fencing and any trees or shrubs.

4. Design and provide site grades that are mowable.

5. Design site to provide: 15’ of clearance around tank, a 25’ x 60’ level and hard surfaced permanent staging area, and room for a tractor with a 45’ trailer to turn around.

6. Provide 12’ of paved driveway surface around tank.

7. Design on-site and off-site drainage capable of handling overflow water or any site water generated by a 25-year storm event, whichever is greater.

8. Design drainage and overflow discharge to an area that will not impact existing or future residential properties or roadside drainage issues.

9. Provide a 220v single phase 100 amp electrical service at tank for telemetry and cathodic protection systems.

10. Design and provide a valve control vault for inlet altitude valve and outlet check valve, complete with gravity sump, and an Authority approved pressure transmitter. Vault to have an aluminum hatchway over both valves for ease of maintenance. Provide an aluminum ladder that meets OSHA standards with a ladder-up safety post.

11. Provide a telemetry and electrical control box to the Authority’s standards. Verify type of telemetry communication means to be used with the Authority. Provide telemetry conduit, cable, and antenna complete with attachment brackets.

12. Provide a fully restored site that is paved and mowable as approved by the Authority.
13. Provide a driveway with a maximum of 8% slope, capable of handling a tractor with a 45’ trailer and paved for the first and last 40’ and any locations where slope exceeds 6%. Provide a lockable gate across driveway if gate on tank fence is more than 100’ from edge-of-pavement.

14. Design and provide security measures meeting the Authority’s requirements including all tank and vault hatches, telemetry cabinet and gates.

2.07 Water Main Location

A. Locate main extension within a dedicated right-or-way. If a dedicated right-of-way is not available, then the main may be located elsewhere, with the Authority’s approval, and upon the granting of an easement to the Authority.

Provide easements that are 30 feet or greater in width for operation, maintenance and replacement. Design water mains so that they are located, at a minimum, ten (10) feet from the property line or easement edge or as specified by the Authority for the entire water main length.

B. Locate water mains a minimum of six (6) feet from the edge of pavement and 15’ from any building or structure.

C. Minimize the creation of dead-end water mains by looping them whenever practical.

D. Install mains in cul-de-sacs so that they run the full street length, ending with a hydrant, unless the water main is looped.

E. Maintain at least 10 feet of horizontal separation from storm and sanitary sewers and at least 6 feet of horizontal separation from all other utilities.

F. Maintain a minimum vertical separation of 18 inches when water main crosses above storm or sanitary sewers. Maintain a minimum vertical separation of 18 inches with one full length of water main centered on crossing when water main crosses under storm or sanitary sewers.

2.08 Water Services

A. Eligibility requirements for water service are stated in the Authority’s Rules and Regulations. Parcels are eligible for water service if they meet the following conditions:

1. Parcel must have frontage on a water main.

2. Water main must extend across the entire length of the structure to be served (applicants shall be required to extend the water main at their own cost to meet this requirement).
3. Both the water main and proposed service must be adequate to meet the needs of the parcel.

B. Install water services perpendicular to water main.

C. Installation of water services off proposed water mains in subdivisions shall be included in the Main Extension Agreement (MEA) or Private Water Main Extension (PWME) agreement.

Subdivision lots receiving service off of an existing water main will be excepted from the MEA or PWME. These lots will be noted on the approved plans as “MCWA Exception Lots”. Application for service for these lots shall be made separately by the Developer to the Authority at the time of building construction. Only the Authority can install the public portion of Exception Lot services.

D. Advance taps, in general, will not be allowed. Developers of single family residential subdivisions may seek approval for advance services. Approval shall be given on a case by case basis. Locations of all advance taps shall be shown on plans. Developer shall install only those advance taps which are shown on the Approved Plans.

No advance taps will be approved in non-residential developments.

Payment for advance service installations shall be made at the time of execution of the MEA or PWME agreement.

E. The Developer shall pay all costs for the Authority to abandon any unneeded advance tap.

2.09 Valves

A. Provide a sufficient number of valves to minimize inconvenience and sanitary hazards during repairs. Locate valves to meet requirements listed below:

1. Arrange so that no more than 2 fire hydrants can be isolated at any time.

2. Space at minimum intervals of 500 feet in industrial or commercially zoned areas.

3. Space at minimum intervals of 1000 feet, and including no more than 20 services in residential areas.

4. Locate at intersections of 2 or more mains.

5. Arrange so that no more than 5 valves are necessary to isolate any area.

6. Locate for proper operation and maintenance of the system in the opinion of the Authority.

7. Locate outside of street pavement, gutters, sidewalks and driveways,
8. Install downstream of the last service and a minimum of 40 feet upstream of the end of all temporarily dead-ended water mains.

9. Install on both sides of service lines used to supply schools, hospitals, dialysis treatment centers, nursing homes (or other critical care facilities), convention centers, hotels and motels.

10. Use anchor tees whenever applicable to hold valves in place.

B. Should a Developer chose to utilize an existing valve and the valve leaks during a pressure test after all other possible causes are exhausted, then the Developer may request the Authority replace the existing valve at Developer’s expense. After valve replacement the Developer’s Contractor shall flush and test the new system, under the Authority’s inspection. If the pressure test passes, the Authority will reimburse the cost of the valve to the Developer. If the pressure test fails, the Authority retains the cost of the valve and the Developer’s Contractor continues to search for the leak until found and a successful pressure test is obtained.

C. Install air relief or air vacuum relief valves if required by the Authority on pipeline high points and other changes in grade, depending on main size and terrain.

D. Install pressure reducing valves (PRV) if required by the Authority where it is necessary to reduce water pressure to less than maximum value allowed.

E. Install blow-offs or dead-end hydrants on all permanent dead-end pipe runs and at locations designated by the Engineer during plan review. Install blow-offs in accordance with the Standard Details.

2.10 Hydrants

A. Hydrant Locations: Site public hydrants using the following criteria:

1. Place within the public right-of-way or on an easement dedicated to the Authority and located at property line intersections where such lines exist and near road intersections.

2. Site so that there is a minimum space of 3 feet from pavement and sidewalks and 10 feet from driveways.

3. Place at a maximum spacing of 500 feet in residential areas. In rural or sparsely developed areas, the Authority reserves the right to increase the spacing limits. The Authority may require narrower spacing in congested business and residential areas.

4. Install as required by the Authority at high points and low points for air-release and blow-off purposes.
5. Install at the end of all permanently dead-ended water mains.

6. Obtain the Authority’s approval for hydrant spacing on transmission mains and other situations not mentioned above.

B. Hydrant Branch Limitations

1. Definitions:
 a. Branch: Consists of all pipe, fittings and valves installed between tee connection at water main and hydrant for all perpendicular and parallel hydrant assemblies, or the reducer and the hydrant for dead-end hydrant assemblies.
 i. Branch Length: Distance as measured from center of tee or reducer to center of hydrant.
 ii. Branch Size: Minimum of 6-inches in diameter.
 b. Combined Service Branch: Section of a public hydrant branch that supplies water to a service. Section begins at the water main and ends at the service connection point.
 c. Private Hydrant: A hydrant located on private property that is privately owned.
 d. Public Hydrant: A hydrant connected directly to a publically dedicated water main that is located within the public right-of-way or an easement dedicated to the Authority.
 e. Reduced Pressure Zone Detector Assembly (RPDA): A valve assembly designed to prevent a backflow event from occurring using dual reduced pressure zone valves with a water meter to detect system leaks and unauthorized use of water.

2. Public Hydrants:
 a. Design hydrant branches to be less than 75 feet in length unless branch line is used as a combined service. If used as a combined service branch, then the Authority reserves the right to limit the branch length to maintain water quality.
 b. If an existing hydrant branch is used as a combined service, then a valve will be required at the connection point to the water main, a second at the service connection to the branch and a third on the branch down stream of the service to isolate the hydrant for repair.
 c. Install a Dead-End Perpendicular Hydrant Assembly at the end of all hydrant branches that are constructed of unrestrained pipe and in locations where the end of the water main will not be extended.
d. Coat public hydrants yellow in accordance with the Material and Performance Specifications.

3. Private Hydrants

a. Protect all private hydrants with a RPDA backflow prevention device. Submit an application for each RPDA device installation for review by the Authority and approval by MCDOPH.

b. Coat private hydrants red in accordance with the Material and Performance Specifications.

c. Use of private hydrants is restricted to extinguishing fires, and periodic testing.

2.11 Automatic Flushing and Sampling Stations

A. Provide automatic flushing units if required by the Authority. Use Hydro-Guard H3 flushing units as manufactured by Mueller. Design flushing rate and means to safely convey water away from the discharge point to prevent flooding and ponding.

B. Provide permanent cold climate year round sampling station if required by the Authority.

2.12 Vaults

A. Design vaults to withstand floatation forces, handle traffic loading, allow access to equipment inside for maintenance and replacement, drain properly, prevent intrusion of ground and surface water, minimize settlement, OSHA standards, and in accordance with the Material and Performance Specifications contained in Section 4.

B. Design vault piping so that isolation valves are restrained against movement when closed. Use of mechanical joint restraint glands and gaskets are not allowed to restrain isolation valves.

C. Provide supports under pipe and components.

D. Provide a ladder with a bottom rung no more that 12 inches above the floor and a top rung no more than 6 inches lower that top of access hatch. Provide a ladder-up safety post to assist with entering and exiting the vault. Design ladder and vault to meet OSHA standards for ladder clearance.

E. Coat piping and appurtenances inside vault to the Authority’s standards. Order factory applied primers that are compatible with the Authority's approved coating systems.

F. Design access hatchways to be installed over valves for easier removal and replacement.
2.13 Cross Connection Control

A. Provide cross connection control protection, using either a New York State Department of Health Approved Backflow Prevention Device or an air gap, on every commercial service and residential service connection where a potential hazard exists or could exist as determined solely by the Authority. Utilize containment methods as required by New York State Department of Health regulations and the Authority’s standards, to protect the public water supply from a backflow event. Match type of containment to the degree of hazard posed at each facility served.

B. Approval of all private water service connections is dependant on protecting the public water supply. No water service connections will be installed without proper cross connect control. All backflow prevention systems shall be approved by the Authority in advance of installation.

C. Water service to any premises shall not be activated by the Authority if a backflow prevention system is required and any of the following conditions are present:

 1. A backflow prevention assembly is not installed or has been removed after installation.

 2. A backflow prevention assembly has been by-passed with an unprotected line.

 3. A backflow prevention assembly is in any way altered.

 4. An unprotected cross-connection exists on the premises.

D. When required, the Developer or Owner shall submit an Engineer’s Report, plans and application for backflow prevention system approval.

E. Design backflow prevention systems that take into consideration pressure loss across the device and maintenance requirements for critical services. Install a parallel assembly when service interruptions are a concern as backflow devices are shut off for annual testing and periodic maintenance.

2.14 Water Main Extension Submittal

A. Provide the following information with each project submittal:

 1. A completed Proposed Project Data Sheet (Appendix F).

 2. One copy of an overall master plan showing the area to be served (total build-out of the project) and any other adjoining proposed developments.

 3. A hydraulic network analysis or system analysis for flow and pressure in the form prescribed by in Article 2.04 above. Submit HNA data for projects with a pump station and/or tank during the conceptual design planning stage.
4. A vicinity map showing adjacent area and the relationship between proposed facilities and existing facilities.

5. A written statement detailing the completion of the environmental assessment process under the State Environmental Quality Review Act.

6. A complete set of thrust block calculations signed and sealed by the Developer’s Engineer, complete with the safety factor, design pressure, soil type, source of soil determination and soil bearing strength used.

7. All calculations determining the minimum laying length of pipe required between the end of the main and the last (upstream) valve such that when the valve is closed, and the pressure released from the main, and the thrust block removed from the end of the main to extend it, the main and valve will not move. These laying length calculations are only required when the proposed water main will be a temporary dead-end main that will be extended at a future date.

8. A written statement detailing utility crossings of a special nature (high pressure gas lines, high voltage power conduits, petroleum pipe lines, etc...) that may require special notifications, inspections, protection from impressed current cathodic protection systems or depth of cover requirements.

9. A written statement of potential impacts to water quality, including remedial measures if necessary.

B. Provide submittal drawings that follow the requirements stated below:

1. General Plan:
 a. Label project name.
 b. Provide Developer’s name, address and phone number.
 c. Provide Engineer’s name, address and phone number.
 d. Provide Profession Engineer’s stamp and signature on final drawings and required calculations.
 e. Provide a legend.
 f. Provide a north arrow.
 g. Label scale(s) (horizontal and vertical).
 h. Provide a signature block for the Authority’s approval.
 i. Label horizontal scale; scale shall be between $1'' = 10'$ and $1'' = 40'$.

2-16
j. Draw all proposed mains true to scale with no break lines.

k. Provide benchmark data and identification of a tie between existing or proposed survey monuments and submitted easement documents.

2. Utility Plan:
 a. Provide plans that indicate all water details up to, and for, the property to be served.
 b. Provide street names and right-of-way dimensions.
 c. Show all rights-of-way and easement lines (all easement lines to include bearings); may also be shown on the subdivision (plat) plan.
 d. Show all existing mains, laterals, valves, hydrants, etc. Locate all existing and proposed obstructions, such as utility vaults, catch basins, traffic islands, etc.
 e. Show all proposed mains, stubs, valves, bends, reducers, hydrants and appurtenances, dimensioned from existing stationary markers (street light, sign, hydrant, etc.) and surveyed controls (street intersections, centerlines, property lines, etc.)
 f. Show adjacent areas and their relationship between the proposed facilities and all existing facilities, (i.e. surface grading, etc.)
 g. Show all driveway, sidewalk, curb, gutter and structure footprint locations.
 h. Provide all of the Authority’s standard notes and details as required by these standards.
 i. Provide all curve data on deflected water mains.

3. Subdivision (Plat) Plan
 a. Show all rights-of-way and easement lines (all easement lines to include bearings); may also be shown on the utility plan.
 b. Provide all Tax Account Numbers for on-site and adjoining properties.

4. Profiles
 a. Provide profiles for all mains proposed.
b. Identify all other utilities, existing and proposed (i.e. gas, sewer, etc.). Locate all existing or proposed obstructions such as utility vaults, catch basins, traffic islands, etc.

c. Show casing length, restrained joint pipe length, and depth of all existing and proposed utilities at road bore crosses.

d. Provide all necessary Authority standard notes and details as required by these standards.

5. Provide additional plan submittals, as required by the Authority. These may include but are not limited to a grading plan, landscaping plan and an erosion control plan.

C. Supply the information outlined below whenever easements are to be granted to the Authority. Final Plans will not be signed until all easements are ready to be recorded at the County Clerk’s Office.

1. Provide owner’s exact name and address. If the Owner is not an individual, then also provide the name and title of the person who will be executing the easement document.

2. Provide the name and address that the easement should be sent to for execution arrangements (e.g. attorney, engineer, or owner.)

3. Provide a copy of the most current deeds (including the recording pages) for all properties through which the easements run.

4. Certify ownership to the Authority; either in a letter or other suitable form (no abstracts or title insurance documents). A title company or an attorney can do this work. In the body of the letter include the following for each deed:

 a. Liber and page numbers.

 b. Recording date.

 c. Tax account numbers.

 d. Property addresses.

5. Provide tax maps highlighting each parcel involved and the approximate locations of the easements.

6. Provide point of beginning anchors to intersections of two dedicated roads or a filed map.

7. Send easement descriptions in Microsoft Word format, either on disk or by email.
After all of the above items are provided, reviewed and approved, the Authority will prepare the easement document(s) and send it to the appropriate recipient to arrange for execution. Or, the easement document can be picked up at the Authority’s General Offices. When the easement document is returned to the Authority and is properly executed it can be recorded at the County Clerk’s Office, and the easement process is complete.

D. Submit a complete set of water supply plans for review, and make all the required changes as requested by the Authority. Project fees, applications, and agreements are not required at this time. Final project approval must be obtained before construction is initiated.

E. Resubmit one set of revised water supply plans if the drawings or other information change from the initial submission with respect to the water main installation.

F. Approval of Plans shall be granted after all easements are granted to the Authority, all of the Authority’s concerns and comments are addressed, all plans are signed and stamped by an engineer that is registered by the State of New York, and one set of original mylar plans are supplied. Allow a minimum period of one week to review the final mylar plans.

G. Issuance of approval is for the proposed water system only and does not include cross connection control review. Cross connection control requires a separate application, which must also be approved by the Department of Health having jurisdiction.

H. Construction must commence within 2 years of the approval date shown on the plans, and must be diligently pursued to completion or the project may be subject to cancellation and must then be resubmitted for review and approval in accordance with the Authority’s Rules and Regulations currently in effect. If construction has not started within this period, the approval shall be void, and the Developer shall be required to resubmit the necessary plans and information for approval by the Authority.

2.15 Corrosive Soils

A. Submit certified results of the Ductile Iron Pipe Research Association’s (DIPRA) Ten Point Soil Test prior to commencing construction. Testing shall be conducted by a qualified soil testing laboratory, and the results shall be submitted to the Authority.

The Developer may choose to wrap the entire main in polyethylene in lieu of soils testing. In this case, a note stating this shall be placed on the plans.

Soil test samples, if performed, shall be:

1. Taken along the route of the proposed water main.

2. Taken at a maximum spacing of 500 feet with a minimum of one test in developments less than 500 feet long
3. Taken in all wetlands, fill areas and railroad beds (existing or abandoned) that the water main route crosses or occupies.

4. Taken at the elevation of the top of the proposed water main.

5. Taken at all Hazmat Spill sites, gas stations (existing or abandoned), and areas with contaminated soil. Provide test results for volatile organic compounds and hydrocarbons in addition to DIPRA results.

6. Reference sample sites on the report by the project’s station number.

B. Certify that the samples tested are from the site referenced on the form and were taken along the pipe route at the appropriate depth. Certification may be done on the form or in a separate letter from the Developer’s Engineer.

C. Upon submission of a satisfactory soil testing report, the Engineer will make the determination as to whether or not a main will require polyethylene encasement, and the limits of such encasement. Water mains installed in soils with DIPRA Point Totals of 10 or greater shall be wrapped in polyethylene. Polyethylene encasement shall be installed in accordance with the Authority’s Materials and Performance Specifications.

~ END OF SECTION ~